Activity

LAGI YOUTH JURY
land art generator initiative powered by art!

DESCRIPTION

Students analyze LAGI artworks through a guided exercise. After gaining a deeper understanding of the concepts behind the artworks they are asked to assess each submission based on the LAGI Jury Criteria.

GOALS

1. Apply visual literacy and analytical skills
2. Effectively compare and rank designs based on selection criteria
3. Practice skills in collaboration

TIME TO COMPLETE ACTIVITY

30–45 minutes

STEP-BY-STEP INSTRUCTIONS

Step 1 (10 minutes)

Instructor shows the LAGI Jury Example Presentation to the entire group. It demonstrates how the LAGI jury criteria was applied to the winner of the 2014 LAGI design competition. Have a group discussion about the selection process.

Step 2 (5 minutes for each: total 25 minutes)

Together study the four LAGI artwork designs in the pages that follow. Discuss the details including the title, the technology, its annual electrical output capacity, and the artist’s written description.

Step 3 (15 minutes)

It’s your turn to assess! Follow the criteria and assign the points using the worksheet on the next page. Rate each of the four designs based on all of the LAGI Jury Criteria. Give 1–5 points for each criteria and total the points in the box at the bottom.

Step 4 (15 minutes)

Instructor sums up all of the scores using the totals from each individual juror (consider going around the room with each student speaking their scores) and presents the winner. Have a group discussion about the winning submission.
Students get into groups and rate each design they looked at based on the LAGI Jury Criteria. They can give 1–5 points for each criteria. The project with the most points wins!

LAGI Jurors assess artwork proposals based on the five sets of questions below (called criteria). Each question leads you to make an assessment with your answer. It could be a “yes” or a “no.” Or it could be “very much” or “very little.” If you answer “yes” or “very much” you’ll give more points; “no” or “very little” would mean less points. There are no right answers, but do your best to be honest and helpful to the artist with the points you assign. Using criteria is a way to make your assessment fair and constructive.

Criteria 1. How does the artwork fit into its surroundings? Is the design responding to elements around it such as buildings, landscape, or human culture?

Criteria 2. Is the design sensitive to nature? Can you think of any ways in which it might be harmful or beneficial to animals or to the environment?

Criteria 3. How much clean electricity can be produced by the artwork? (refer back to the Energy Fundamentals activity)

Criteria 4. How does the artwork address the public? How can people interact with it? Do you think it would be a nice addition to the community?

Criteria 5. What does the artwork make you think about? Does it provide meaning or ask important questions? Is it beautiful? Poetic?
ARTIST TEAM
Jaesik Lim, Ahyoung Lee, Sunpil Choi, Dohyoung Kim, Hoeyoung Jung, and Jaeyoul Kim

ENERGY TECHNOLOGIES
organic photovoltaic (OPV), kinetic harvesting (piezoelectric)

ANNUAL CAPACITY
4,230 MWh (4,500 MWh minus 200 MWh for lighting and 70 MWh for soil cleansing)

ARTIST’S WRITTEN DESCRIPTION
Inspired by the kinetic sculptures of artist Len Lye, Beyond the Wave creates visual movement and dynamic expression with ribbons attached to flexible poles. The way the poles and ribbons are placed is based on the way that the wind blows across the site and also on the type of soil in the ground. Some of the electricity produced is used to light the artwork, and some is used to clean the soil through a process called Electrokinetic Remediation. The rest is distributed to the city grid.

The ribbon that interconnects the poles symbolically becomes a “wave,” representing the encounter between the water and the wind. The system utilizes the power of the sun while also harnessing the forces within the support structures to produce additional energy with piezoelectric disks. The poles to allow the ground to be open for various park-like activities. A display panel in the lower part of the pole indicates the amount of energy generated.
ARTIST TEAM
Trevor Lee and Clare Olsen

ENERGY TECHNOLOGIES
compact wind acceleration turbines and flexible solar film

Annual Capacity
500 MWh

ARTIST’S WRITTEN DESCRIPTION
Simultaneously embedded in the landscape and floating in the air, WindNest is a macro scale land art installation that harnesses wind and sun energy. The artwork seems to grow from the dunescape at the site. Hovering above and on the verge of take-off, a network of windsock turbines covered with thin film solar material float like clouds in the wind.

The proposal utilizes materials chosen in consideration of the full life-cycle of the project from material production to construction, maintenance and decommissioning.

Utilizing regionally harvested materials and human resources, the project proposes to engage the local craft economy, using natural materials and minimizing shipping. The ropes, which are UV resistant, will ensure strength over time, but are incredibly thin, having an ethereal and lightweight presence.
ARTIST TEAM
Hareth Pochee, Adam Khan, Louis Leger, and Patrick Fryer

ENERGY TECHNOLOGIES
Photovoltaic Panels

ANNUAL CAPACITY
400 MWh

ARTIST’S WRITTEN DESCRIPTION
So much more than just a duck, Energy Duck is an entertaining and iconic sculpture.

The common eider duck is resident in great numbers in Copenhagen, however its breeding habitat is at risk from the effects of climate change. Energy Duck takes the form of the eider to act both as a solar collector and a buoyant energy battery.

Solar radiation is converted to electricity using low cost, off the shelf PV panels. Some of the solar electricity is stored in the form of gravitational potential energy via water pressure. At night, when there is no solar radiation the water pressure can be released through hydro turbines within the duck’s belly providing renewable electricity at all times. The floating height of the duck is an indicator of the amount of city wide energy use relative to the renewable generation.
ARTIST TEAM
Antonio Maccà and Flavio Masi

ENERGY TECHNOLOGIES
various types of photovoltaic panels of differing reflective hues

Annual Capacity:
1,000 MWh

ARTIST’S WRITTEN DESCRIPTION
The project is an artistic interpretation of the Solar System and marks the position of the planets corresponding to the configuration of the Solar System on December 2nd 1971, the day in which the United Arab Emirates was founded. The environmental installation is a metaphor of the Seven Emirates, represented in the form of a Sun with six planets. The artwork is also meant to create a new iconic sun for the City of Abu Dhabi: the astronomic Sun radiating energy to the new photovoltaic sun, which will generate light and electricity for the city.

The PV sun works as the attracting element and symbolizes the unity and infinity of the cosmos. The endless geometrical pattern of the golden surface, with its timeless perfection and purity, represents the starry sky and creates a spherical motif of both light and shade. The spheres are all different, varying in structure, dimension, color, transparency, and photovoltaic technology.